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Abstract
A method for introducing the higher order terms in the potential expansion to
study the continuous limits of the Toda hierarchy is proposed in this paper. The
method ensures that the higher order terms are differential polynomials of the
lower ones and can be continued to be performed indefinitely. By introducing
the higher order terms, the fewer equations in the Toda hierarchy are needed
in the so-called recombination method to recover the KdV hierarchy. It is
shown that the Lax pairs, the Poisson tensors and the Hamiltonians of the Toda
hierarchy tend towards the corresponding ones of the KdV hierarchy in the
continuous limit.

PACS numbers: 02.30.Ik, 02.30.−f, 05.45.Yv

1. Introduction

The continuous limits of discrete systems are one of the remarkably important research areas
in soliton theory [1–4]. In recent years, more attention was focused on the continuous limit
relations between hierarchies of discrete systems and hierarchies of soliton equations [5–9].
The so-called recombination method, i.e. properly combining the objects (such as the vector
fields) of discrete systems, was first proposed to study the continuous limit of the Ablowitz–
Ladik hierarchy [5] and the Kac–van Moerbeke hierarchy [6]. Morosi and Pizzocchero also
used the recombination method to study the continuous limits of some integrable lattices in
their recent works [7–9]. Up to now, there has not been much work concerning the continuous
limit relations between lattices and differential equations, which have different numbers of
potentials. Furthermore, to the best of our knowledge, there is no work which successfully
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gives a way to introduce the higher order terms in potential expansions to study the continuous
limit relations between hierarchies of lattices and hierarchies of soliton equations. Illumined
by Gieseker’s conjecture [10], we will propose a method for finding the higher order terms in
potential expansions to study the continuous limit relation between the Toda hierarchy and the
KdV hierarchy by the recombination method.

In 1996, Gieseker proposed a conjecture [10]:

Conjecture. Denote w(n, t) and v(n, t), where n ∈ Z and t ∈ R, as the two potentials of the
Toda hierarchy, and let f be a function of x ∈ R and t ∈ R. There are �i(f ), which are the
differential polynomials of f , so that if we define

w(n, t) = −2 + f (x, t)h2 + h2
L∑

i=1

�i(f (x, t))hi (1.1a)

v(n, t) = 1 + f (x, t)h2 − h2
L∑

i=1

�i(f (x, t))hi (1.1b)

where h is the small step of lattice and x = nh, then by taking suitable linear combinations
of the equations of Toda hierarchy under definition (1.1), we can produce asymptotic series
whose leading terms in h are the KdV hierarchy if L is large enough.

In [10], Gieseker proposed a way to introduce �i(f ) by using the Toda lattice

wt = v − Ev = v − v(1) vt = v
(
E(−1)w − w

) = v
(
w(−1) − w

)
(1.2)

where the shift operator E is defined by

(Ef )(n) = f (n + 1) f (k)(n) = E(k)f (n) = f (n + k) n, k ∈ Z.

For instance, in order to find �1(f ), substituting definition (1.1) into equation (1.2) and
expanding the shift terms by Taylor’s theorem

df

dt
+

d�1(f )

dt
h = −df

dx
h − d2f

2 dx2
h2 +

d�1(f )

dx
h2 + O(h3) (1.3a)

df

dt
− d�1(f )

dt
h = −df

dx
h +

d2f

2 dx2
h2 − d�1(f )

dx
h2 + O(h3). (1.3b)

Combining the above two equations we know
df

dt
= −df

dx
h + O(h3) (1.4)

then by the chain rule we have
d�1(f )

dt
= −d�1(f )

dx
h + O(h2). (1.5)

Note from the above equation and equation (1.3a) one can get

d�1(f )

dx
= 1

4

d2f

dx2
(1.6)

which by integration yields

�1(f ) = 1

4

df

dx
. (1.7)

We can see that the integration must be used in this process for finding �i(f ). As a
consequence, there is a problem whether this process can be continued indefinitely and the
�i(f ), found in this process, are the differential polynomials of f .
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Gieseker’s conjecture was proved in the following three cases of (1.1) [11]:

(a) L = 0, f (x, t) = 1
2q(x, t);

(b) L = 1, f (x, t) = 1
2q(x, t), �1(f ) = 1

8qx;
(c) L = 2, f (x, t) = 1

2q(x, t), �1(f ) = 1
8qx, �2(q) = − 1

32q2.

It was found that fewer equations in the Toda hierarchy are needed in the recombination
method for case (c) to give the KdV hierarchy than for case (a).

In this paper, we will give a new method to introduce �i(f ) required in (1.1) instead
of Gieseker’s process so that we can derive the continuous limit relation between the Toda
hierarchy and the KdV hierarchy by the recombination method. Following our approach
for finding �i(f ), one can easily see that the �i(f ) are all differential polynomials of f .
Compared with the previous work in [11], we will show that fewer equations in the Toda
hierarchy are needed in the recombination method for giving the KdV hierarchy if higher
order terms are introduced in the potential expansion (1.1). We will also show that the
Lax pairs, the Poisson tensors and the Hamiltonians of the Toda hierarchy tend towards the
corresponding ones of the KdV hierarchy in the continuous limit.

2. Basic notation and some known results

For later use, we list some notation and results in [11]. Let us consider the following discrete
isospectral problem [12, 13],

Ly = (
E + w + vE(−1)

)
y = λy (2.8)

where w = w(n, t) and v = v(n, t) depend on integer n ∈ Z and real variable t ∈ R, and λ is
the spectral parameter.

The equation in the Toda hierarchy associated with (2.8) can be written as the following
Hamiltonian equation [12]:(

w

v

)
tm

= JKm+1 = J
δHm+1

δu
m = 0, 1, . . . (2.9)

where δ
δu

= (
δ

δw
, δ

δv

)T
, and the Poisson tensor J and the Hamiltonians Hi are defined by

J ≡
(

0 J12

J21 0

)
≡
(

0 (1 − E)v

v
(
E(−1) − 1

)
0

)

Ki ≡
(

Ki,1

Ki,2

)
= δHi

δu
=
(−b

(1)

i
ai

v

)
i = 0, 1 . . . (2.10)

H0 = 1

2
ln v Hi = −bi+1

i
i = 1, 2, . . .

with a0 = 1
2 , b0 = 0 and

b
(1)

i+1 = wb
(1)
i −

(
a

(1)
i + ai

)
a

(1)

i+1 − ai+1 = w
(
a

(1)
i − ai

)
+ vbi − v(1)b

(2)
i (2.11)

for i = 0, 1, . . . . The Lax pairs for the mth equation of the Toda hierarchy (2.9) are given by
(2.8) and

ytm = Amy =
m∑

i=0

(
−vb

(1)
i E(−1) − ai

) (
E + w + vE(−1)

)m−i
y m = 0, 1, . . . . (2.12)
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Equations (2.9) have the bi-Hamiltonian formulation

GKi−1 = JKi i = 1, 2, . . .
(2.13)

G ≡
(

vE(−1) − v(1)E w(1 − E)v

v
(
E(−1) − 1

)
w v

(
E(−1) − E

)
v

)
where G is the second Poisson tensor. The Toda hierarchy also has a tri-Hamiltonian
formulation and a Virasoro algebra of master symmetries [14, 15]. The first four covariants
Ki are

K0 =
(

0
1

2v

)
K1 =

(
1
0

)
K2 =

(
w

1

)
K3 =

(
v + v(1) + w2

w + w(−1)

)
. (2.14)

The Schrödinger spectral problem is given by

L̄ȳ = (
∂2
x + q

)
ȳ = −λ̄ȳ (2.15)

which is associated with the KdV hierarchy [13]

qtm = B0Pm = B0
δH̄m

δq
m = 0, 1, . . . (2.16)

where the vector field possesses the bi-Hamiltonian formulation with two Poisson tensors B0

and B1

B0Pk+1 = B1Pk k = 0, 1, . . .
(2.17)

B0 = ∂ ≡ ∂x B1 = 1

4
∂3 + q∂ +

1

2
qx H̄ i = 4b̄i+2

2i + 1
i = 0, 1, . . .

with b̄0 = 0, b̄1 = 1 and

b̄i+1 = (
1
4∂2 + q − 1

2∂−1qx

)
b̄i i = 0, 1, . . .

where ∂−1∂ = ∂∂−1 = 1. The first three covariants Pk read as

P0 = 2 P1 = q P2 = 1
4

(
3q2 + qxx

)
. (2.18)

The well-known KdV equation is the second one:

qt2 = 1
4

(
3q2 + qxx

)
x
. (2.19)

The Lax pairs for the mth equation of the KdV hierarchy (2.16) are given by (2.15) and

ȳtm = Āmȳ =
m∑

i=0

(
−1

2
b̄i,x + b̄i∂

)
(∂2 + q)m−i ȳ m = 0, 1, . . . . (2.20)

Let us consider the Toda hierarchy on a lattice with a small step h. We interpolate the
sequences (w(n)) and (v(n)) with two smooth functions of a continuous variable x, and relate
w(n) and v(n) to f (x) by using (1.1). Suppose

E(k)w(n) = −2 + f (x + kh)h2 + h2
L∑

i=1

�i(f (x + kh))hi

E(k)v(n) = 1 + f (x + kh)h2 − h2
L∑

i=1

�i(f (x + kh))hi k ∈ Z.

In [11], we got the following result.
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Proposition 1. Under relation (1.1) with f (x, t) = 1
2q(x, t), the Lax operator of the Toda

hierarchy goes to the Lax operator of the KdV hierarchy in the continuous limit, i.e. we have

L = L̄h2 + O(h3). (2.21)

Lemma 1. Under relation (1.1), we have

Ki =
(−b

(1)

i
ai

v

)
=
(

αi

γi

)
+ O(h) i = 0, 1, . . . (2.22)

where αi and γi are given by

α0 = 0 α1 = 1 γ0 = 1
2 γ1 = 0 (2.23a)

αi = (−1)(i−1)Ci−1
2i−2 γi = (−1)iCi

2i−2 i = 2, 3, . . . . (2.23b)

Define J̃ = (0 J̃ 21

J̃ 12 0

)
by requiring that J J̃ = I. Then the following lemma is true.

Lemma 2. Under relation (1.1), we have

T Ki ≡ J̃GKi = Ki+1 + δi+1K0 i = 0, 1, . . . (2.24)

where

δi = −2(αi + γi) = (−1)i
2

i
Ci−1

2i−2 i = 1, 2, . . . . (2.25)

Proposition 2. Under relation (1.1) with f (x, t) = 1
2q(x, t), the Poisson tensors of the Toda

hierarchy go to those of the KdV hierarchy in the continuous limit,

J = −B0

(
0 1
1 0

)
h + O(h2) Wij + Wkl = −B1h

3 + O(h4) (2.26)

where W ≡ 1
4GJ̃G + G = (Wij ), 1 � i, j � 2, and

(i, j, k, l) ∈ {(1, 1, 1, 2), (1, 1, 2, 1), (1, 2, 2, 2), (2, 1, 2, 2)}.

3. Higher order potential expansion and the continuous limits of the Toda hierarchy

Now, we give a new method to introduce �i(f ) as required in (1.1) and derive the continuous
limits of the Toda hierarchy under relation (1.1) with f (x, t) = 1

2q(x, t).

Lemma 3. Define the operator as

T ≡ J̃G =
(

T11 T12

T21 T22

)
. (3.27)

Then under relation (1.1) with f (x, t) = 1
2q(x, t), the operator T has the following expansions

for its entries:

T11 = −2 + 1
2h2q + O(h3) T12 = 2 + h∂ +

(
1
2∂2 + q

)
h2 + O(h3)

T21 = 2 − h∂ +
(

1
2∂2 − 1

2∂−1qx

)
h2 + O(h3) T22 = −2 + 1

2h2∂−1q∂ + O(h3).

Proof. The result can be found in [11] (see the proof of lemma 3 in [11]). �
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Lemma 4. Under relation (1.1) with f (x, t) = 1
2q(x, t), we have the following expansions,

Ki ≡
(

Ki,1

Ki,2

)
=
(

αi + �i,1,0(q)h2 + h2∑L
j=1 hj (ζi,1�j + �i,1,j (q,�1, . . . ,�j−1))

γi + �i,2,0(q)h2 + h2
∑L

j=1 hj (ζi,2�j + �i,2,j (q,�1, . . . ,�j−1))

)
+ O(hL+3) (3.28)

for i = 0, 1, 2, . . . , where αi and γi are given in lemma 1,

ζ0,1 = 0 ζ0,2 = 1
2 ζ1,1 = 0 ζ1,2 = 0

ζi+1,1 = −2ζi,1 + 2ζi,2 + αi − 2γi ζi+1,2 = 2ζi,1 − 2ζi,2 + αi − 1
2δi+1 i = 0, 1, . . . .

(3.29)

�i,1,j (q,�1, . . . ,�j−1) stands for the term which is a differential polynomial of q, �1, . . . ,

�j−1, etc.

Proof. Define ci = −vb
(1)

i , i = 0, 1, . . . . Using the identity [12]

k∑
i=0

(aiak−i + bick−i ) = 0 k = 1, 2, . . .

we can show by mathematical induction that ai, bi, ci , i = 0, 1, . . . , are polynomials of
w, v,w(−1), v(−1), w(1), v(1), . . . . According to the definition of Ki in (2.10), we conclude
that Ki has the expansion formula (3.28). Note lemmas 1 and 2, we can prove (3.29) by
mathematical induction. �

Lemma 5. Define the combination coefficients βk,i , 0 � i � k + 1, k = 0, 1, . . . , as follows:

β0,0 = 2 β0,1 = 1 β1,0 = −2 β1,1 = 2 β1,2 = 1
(3.30)

βk+1,i = βk,i−1 1 � i � k + 2 βk+1,0 =
k+1∑
i=0

βk,iδi+1

then we have
k+1∑
i=0

βk,iαi = 0
k+1∑
i=0

βk,iγi = 0 k = 1, 2, . . . .

Proof. It is easy to check the case when k = 1. If the lemma is true for k, then

k+1∑
i=0

βk,iKi = O(h)

(
1
1

)
so according to lemma 2, we have

k+2∑
i=0

βk+1,iKi = J̃G

k+1∑
i=0

βk,iKi = O(h)

(
1
1

)
which completes the proof. �

Lemma 6. Let βk,i be defined by (3.30). Then we have

k+1∑
i=0

βk,i (ζi,2 − ζi,1) = (−4)k k = 1, 2, . . . . (3.31)
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Proof. It is easy to check the case when k = 1. If the lemma is true for k, then we have
(according to lemmas 1 and 4)
k+2∑
i=0

βk+1,i (ζi,2 − ζi,1) = 1

2

k+1∑
i=0

βk,iδi+1 +
k+2∑
i=1

βk,i−1(ζi,2 − ζi,1)

= 1

2

k+1∑
i=0

βk,iδi+1 +
k+1∑
i=0

βk,i

(
−4ζi,2 + 4ζi,1 − 1

2
δi+1 + 2γi

)

= −4
k+1∑
i=0

βk,i (ζi,2 − ζi,1) + 2
k+1∑
i=0

βk,iγi.

Note lemma 5, and the proof is completed. �

Proposition 3. Given an integer m > 0, let βk,i be defined by (3.30), and set

�2k−1 = (−1)k2−2k−1

[
−1

2
∂Pk + 2

k+1∑
i=0

βk,i (�i,1,2k−1 − �i,2,2k−1)

]

�2k = (−1)k2−2k−1

[
1

2
Pk+1 −

(
1

2
∂2 +

3

2
q

)
1

2
Pk − ∂

k+1∑
i=0

βk,i(ζi,2�2k−1 + �i,2,2k−1)

+ 2
k+1∑
i=0

βk,i (�i,1,2k − �i,2,2k)

]
(3.32)

for k = 1, 2, . . . ,m − 1. Then under relation (1.1) with L = 2m − 2, f (x, t) = 1
2q(x, t) and

(3.32) we have

P̃ m ≡
m+1∑
i=0

βm,iKi = 1

2
Pmh2m

(
1
1

)
+ O(h2m+1) (3.33)

and (
w

v

)
tm

+
1

h2m−1
J P̃m = 1

2

(
qtm − B0Pm

)
h2

(
1
1

)
+ O(h3). (3.34)

Proof. It is easy to check the case when m = 1. If equation (3.33) is valid for m, then we have
(according to lemma 4)

T P̃ m = J̃G

m+1∑
i=0

βm,iKi (3.35)

= J̃G

[
1

2
Pmh2m

(
1
1

)
+ h2m+1

m+1∑
i=0

βm,i

(
ζi,1�2m−1 + �i,1,2m−1

ζi,2�2m−1 + �i,2,2m−1

)

+ h2m+2
m+1∑
i=0

βm,i

(
ζi,1�2m + �i,1,2m

ζi,2�2m + �i,2,2m

)
+ O(h2m+3)

]
. (3.36)

Noting the definition of �2m−1 and �2m in (3.32), we obtain (due to (3.31))

−2
m+1∑
i=0

βm,i(ζi,1�2m−1 + �i,1,2m−1) + 2
m+1∑
i=0

βm,i(ζi,2�2m−1 + �i,2,2m−1) +
1

2
∂Pm = 0 (3.37)
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and(
1

2
∂2 +

3

2
q

)
1

2
Pm + ∂

m+1∑
i=0

βm,i(ζi,2�2m−1 + �i,2,2m−1) − 2
m+1∑
i=0

βm,i(ζi,1�2m + �i,1,2m)

+ 2
m+1∑
i=0

βm,i(ζi,2�2m + �i,2,2m) = 1

2
Pm+1. (3.38)

Combining the above two equations (3.37) and (3.38), and noting equation (2.17), we have(
1

2
∂2 − 1

2
∂−1qx +

1

2
∂−1q∂

)
1

2
Pm − ∂

m+1∑
i=0

βm,i(ζi,1�2m−1 + �i,1,2m−1)

+ 2
m+1∑
i=0

βm,i(ζi,1�2m + �i,1,2m) − 2
m+1∑
i=0

βm,i(ζi,2�2m + �i,2,2m) = 1

2
Pm+1.

(3.39)

So we get

T P̃ m = 1

2
Pm+1h

2m+2

(
1
1

)
+ O(h2m+3). (3.40)

On the other hand (according to lemma 2),

T P̃ m = J̃G

m+1∑
i=0

βm,iKi =
m+1∑
i=0

βm,i(Ki+1 + δi+1K0) = P̃ m+1. (3.41)

Equation (3.34) is the corollary of equation (3.33) and proposition 2. The proof is completed.
�

We give an example here. For m = 3, using proposition 3, we can get

�1 = 1
8 qx �2 = − 1

32q2 �3 = − 1
384qxxx �4 = 1

254

(
q3 + qqxx + q2

x

)
(3.42)

then under relation (1.1) with L = 4, f (x, t) = 1
2q(x, t) and the above �i we have

−10K0 + 4K1 − 2K2 + 2K3 + K4 = 1

2
P3h

6

(
1
1

)
+ O(h7).

In the previous work in [11], we must combine K0,K1, . . . ,K6 to give P3 under relation (1.1)
with L = 0. In general, K0,K1, . . . , K2m need to be combined to give Pm under relation (1.1)
with L = 0 [11]. Proposition 3 shows us that almost half of them, i.e. K0,K1, . . . ,Km+1,
are needed to give Pm by introducing �i(f ) (3.32). Furthermore, according to the recursion
formula for �i(f ) (3.32) it is easy to see that all the �i(f ), introduced by (3.32), are differential
polynomials of f , and our process for finding �i(f ) can be continued indefinitely.

In what follows, we will derive the continuous limit relations between the Hamiltonians,
the Lax pairs of the Toda hierarchy and those of the KdV hierarchy, respectively.

Lemma 7. If there is a relation between w̃(n), n ∈ Z, and q(x), x ∈ R

w̃(n) = q(s1)(x)q(s2)(x) · · · q(sm)(x)hl (3.43)

where h is the step of the lattice, x = nh, si , 1 � i � m and l are non-negative integers, and
denoting S̃ as the operator which stands for submitting relation (3.43) into a polynomial of
w̃, w̃(−1), w̃(1), . . . , and then expanding in Taylor series, we have the formula

δ

δq
◦ S̃ = hlZ̃ ◦ S̃ ◦ δ

δw̃
(3.44)

where Z̃ stands for a differential operator.



Higher order potential expansion for the continuous limits of the Toda hierarchy 4923

The proof for lemma 7 is given in appendix A.

Proposition 4. Given an integer m > 0, set

H̃m ≡
m+1∑
i=0

βm,iHi −
m+1∑
i=1

βm,i

αi+1

i
(3.45)

under relation (1.1) with L = 2m − 2, f (x, t) = 1
2q(x, t) and (3.32), we have∫

S(H̃m) dx = 1

2
h2m+2

∫
H̄m dx + O(h2m+3) (3.46)

where S is an operator which stands for submitting relation (1.1) with L = 2m − 2,
f (x, t) = 1

2q(x, t) and (3.32) into a polynomial of w, v,w(−1), v(−1), w(1), v(1), . . . , and
then expanding in Taylor series.

Proof. According to lemma 7, under relation (1.1) with L = 2m − 2, f (x, t) = 1
2q(x, t) and

(3.32) (since �i are differential polynomials of q), we have

δ

δq
◦ S =

∞∑
j=0

(−∂)j
∂

∂q(j)
◦ S

=
∞∑

j=0

(−∂)j
∑
k∈Z

[(
∂S
(
w(k)

)
∂q(j)

)
S ◦ ∂

∂w(k)
+

(
∂S
(
v(k)

)
∂q(j)

)
S ◦ ∂

∂v(k)

]

= 1

2
h2

∞∑
j=0

(−∂)j
∑
k∈Z

(kh)j

j !
S ◦

(
∂

∂w(k)
+

∂

∂v(k)

)
+ h3Z ◦ S ◦

(
δ

δw
− δ

δv

)

= 1

2
h2S ◦

(
δ

δw
+

δ

δv

)
+ h3Z ◦ S ◦

(
δ

δw
− δ

δv

)
where Z stands for a differential operator, and we do not care about its concrete form. Note
lemma 1 and the definition of Hi in (2.10), we can have the expansion

S(H̃m) =
∞∑
i=2

H̃m,ih
i

where H̃m,i |q=0 = 0, and according to proposition 3, we have

δ

δq
◦ S(H̃m) =

∞∑
i=2

hi δH̃m,i

δq

=
[

1

2
h2S ◦

(
δ

δw
+

δ

δv

)
+ h3Z ◦ S ◦

(
δ

δw
− δ

δv

)] m+1∑
i=0

βm,iHm

= 1

2
h2m+2 δH̄m

δq
+ O(h2m+3).

Then one can get [12]

H̃m,i ∈ const + image(∂) 2 � i � 2m + 1.

As we mentioned above, there is no constant item in each H̃m,i , i � 2 (i.e. H̃m,i |q=0 = 0), so∫
H̃m,i dx = 0 2 � i � 2m + 1.
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Just using the same deduction, we conclude∫
H̃m,2m+2 dx = 1

2

∫
H̄m dx

which completes the proof. �

Lemma 8. Under relation (1.1) with f (x, t) = 1
2q(x, t), we have

Ak = αk − γk +
∞∑
i=2

Ak,ih
i k = 0, 1, . . . (3.47)

where

Ak,2i|q=0 = 0 Ak,2i+1|q=0 = ξk,2i+1∂
2i+1 i = 1, 2, . . . (3.48)

ξk,2i+1 is a constant, and αk and γk are given in lemma 1.

Proof. For k = 0 and k = 1, we have

A0|q=0 = −1

2
A1|q=0 = 1 +

∞∑
j=0

1

(2j + 1)!
h2j+1(−∂)2j+1.

If the lemma is valid for k − 1, note αk = −2αk−1 + 2γk−1 (see lemma 1), we have

Ak|q=0 = Ak−1
(
E + w + vE(−1)

)− vb
(1)

k E(−1) − ak|q=0

=
[
αk−1 − γk−1 +

∞∑
i=0

ξk−1,2i+1h
2i+1∂2i+1

] ∞∑
j=1

2

(2j)!
h2j ∂2j + αk

∞∑
j=0

1

j !
hj (−∂)j − γk

≡ αk − γk +
∞∑
i=0

ξk,2i+1h
2i+1∂2i+1. �

Lemma 9. Define

Ãk ≡
k+1∑
i=1

βk,iAi−1 k = 1, 2 . . . . (3.49)

Then under relation (1.1) with f (x, t) = 1
2q(x, t), we have

Ãk =
∞∑
i=2

Ãk,ih
i (3.50)

where

Ãk,2i |q=0 = 0 Ãk,2i+1|q=0 = ξ̃k,2i+1∂
2i+1 i = 1, 2, . . . (3.51)

ξ̃k,2i+1 is a constant.

Proof. According to lemma 8, we only need to prove
k+1∑
i=1

βk,i (αi−1 − γi−1) = 0. (3.52)

It is easy to check the cases: k = 1 and k = 2, and for k � 3, note lemma 5, we have
k+1∑
i=1

βk,i (αi−1 − γi−1) =
k+1∑
i=1

βk−1,i−1(αi−1 − γi−1) =
k∑

i=0

βk−1,i (αi − γi) = 0

which completes the proof. �
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Proposition 5. Given an integer m > 0, under relation (1.1) with L = 2m − 2, f (x, t) =
1
2 q(x, t) and (3.32), we have

Ãm ≡
m+1∑
i=1

βm,iAi−1 = −Āmh2m−1 + O(h2m). (3.53)

Proof. It is valid for m = 1, 2. According to proposition 3, we have

[Ãm, L] =
m+1∑
i=1

βm,i

dw

dti−1
+

m+1∑
i=1

βm,i

dv

dti−1
E(−1)

= J12

m+1∑
i=1

βm,iKi,2 + J21

m+1∑
i=1

βm,iKi,1E
(−1)

= −B0Pmh2m+1 + O(h2m+2)

= −[Ām, L̄]h2m+1 + O(h2m+2). (3.54)

Under relation (1.1) with L = 2m − 2, f (x, t) = 1
2q(x, t) and (3.32), proposition 1 and

lemma 9 together imply

L = L̄h2 +
∞∑
i=3

Lih
i Ãm =

∞∑
i=2

Ãm,ih
i (3.55)

where Li and Ãm,i are differential operators. Comparing the terms of h4 in (3.54), we know

[Ãm,2, L̄] = 0. (3.56)

According to [16], Ãm,2 can be represented by

Ãm,2 =
∞∑

j=0

ηm,2,j (L̄)j (3.57)

where ηm,2,j are constants. Noting lemma 9, we have

Ãm,2|q=0 = 0 =
∞∑

j=0

ηm,2,j (∂
2)j . (3.58)

Then one can get ηm,2,j = 0 for all j , and

Ãm,2 = 0. (3.59)

Comparing the terms of h5 in (3.54), we know

[Ãm,3, L̄] = 0 (3.60)

then Ãm,3 can be represented by [16]

Ãm,3 =
∞∑

j=0

ηm,3,j (L̄)j (3.61)

where ηm,3,j are constants. Note lemma 9, and we have

Ãm,3|q=0 = ξ̃m,3∂
3 =

∞∑
j=0

ηm,3,j (∂
2)j . (3.62)

Then one can get ηm,3,j = 0 for all j , and

Ãm,3 = 0. (3.63)
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In the same way, we conclude

Ãm,i = 0 i = 2, . . . , 2m − 2. (3.64)

Comparing the terms of h2m+1 in (3.54), we know

[Ãm,2m−1, L̄] = −[Ām, L̄] (3.65)

then Ãm,2m−1 + Ām can be represented by [16]

Ãm,2m−1 + Ām =
∞∑

j=0

ηm,2m−1,j (L̄)j (3.66)

where ηm,2m−1,j are constants. Noting lemma 9 and (2.20), we have

(Ãm,2m−1 + Ām)|q=0 = ξ̃m,2m−1∂
2m−1 + ∂2m−1 =

∞∑
j=0

ηm,2m−1,j (∂
2)j . (3.67)

Then we get ηm,2m−1,j = 0 for all j and

Ãm ≡
2m∑
i=1

βm,iAi−1 = −Āmh2m−1 + O(h2m). (3.68)

Thus the proof is completed. �

4. Conclusions and remarks

In this paper, by introducing the higher order terms in the potential expansion, we have
proved that there is a continuous limit relation between the Toda hierarchy and the KdV
hierarchy. Compared with [11], fewer members of the Toda hierarchy are needed to recover
the KdV hierarchy by the recombination method. For example, proposition 3 shows that
under the potential expansion (1.1) with f (x, t) = 1

2q(x, t) and (3.32), we can combine
K0,K1, . . . ,Km+1, to get Pm in the continuous limit. However, under the lower finite
potential expansion, for example (1.1) with f (x, t) = 1

2q(x, t) and L = 0, we need
K0,K1, . . . ,Km, . . . ,K2m, to recover Pm through the continuous limit process [11].

Compared with [10], a new method of introducing �i(f ) in the potential expansion (1.1)
was presented in this paper. Moreover, from the recursion formula for �i(f ) (3.32), it is easy
to see that the �i(f ), introduced in our construction, are all differential polynomials of f ,
and our process for determining �i(f ) can be continued indefinitely. However, this cannot
be obtained in [10], since the �i(f ) are obtained by integration there.

It was also shown that the Lax pairs, the Poisson tensors and the Hamiltonians of the Toda
hierarchy tend towards the corresponding ones of the KdV hierarchy in the continuous limit.
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Appendix. Proof of lemma 7

Denote w̃i = q(s1) · · · q(si−1)q(si+1) · · · q(sm), for i = 1, . . . ,m, then we have

δ

δq
◦ S̃ =

∞∑
j=0

(−∂)j
∂

∂q(j)
◦ S̃

=
∞∑

j=0

(−∂)j
∑
k∈Z

(
∂S̃(w̃(k))

∂q(j)

)
S̃ ◦ ∂

∂w̃(k)

= hl

m∑
i=1

∞∑
j=si

(−∂)j
∑
k∈Z

(kh)j−si

(j − si)!

(
ekh∂ S̃(w̃i)

)
S̃ ◦ ∂

∂w̃(k)

= hl

m∑
i=1

∞∑
j=0

(−∂)j+si

∑
k∈Z

(kh)j

j !

(
ekh∂ S̃(w̃i)

)
S̃ ◦ ∂

∂w̃(k)

= hl

m∑
i=1

(−∂)si

∞∑
j=0

∑
k∈Z

j∑
p=0

(−kh)j

p!(j − p)!

(
∂p ekh∂ S̃(w̃i)

)
∂j−p ◦ S̃ ◦ ∂

∂w̃(k)

= hl

m∑
i=1

(−∂)si

∞∑
p=0

∑
k∈Z

∞∑
j=p

(−kh)j

p!(j − p)!

(
∂p ekh∂ S̃(w̃i)

)
∂j−p ◦ S̃ ◦ ∂

∂w̃(k)

= hl

m∑
i=1

(−∂)si

∞∑
p=0

(
∂p ekh∂ S̃(w̃i)

)∑
k∈Z

∞∑
j=0

(−kh)j+p

p!j !
∂j ◦ S̃ ◦ ∂

∂w̃(k)

= hl

m∑
i=1

(−∂)si

∞∑
p=0

(−kh)p

p!

(
∂p ekh∂ S̃(w̃i)

)∑
k∈Z

∞∑
j=0

(−kh)j

j !
∂j ◦ S̃ ◦ ∂

∂w̃(k)

= hl

m∑
i=1

(−∂)si

∞∑
p=0

(−kh)p

p!

(
∂p ekh∂ S̃(w̃i)

)
S̃ ◦

∑
k∈Z

E(−k) ◦ ∂

∂w̃(k)

= hl

m∑
i=1

(−∂)si

∞∑
p=0

(−kh)p

p!

(
∂p ekh∂ S̃(w̃i)

)
S̃ ◦ δ

δw̃(k)

≡ hlZ̃ ◦ S̃ ◦ δ

δw̃
.

The proof for lemma 7 is completed. �
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